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ABSTRACT

A barbed wire suspended between two fence posts forms a catenary.
Fixed at one post, a 213 ft span of barbed wire was tightened to 113 lb tension
by a fence stretcher located near the other end post. The sag in the middle of
the catenary was 3.30 ft.  Tightening the wire to 177 lb reduced the sag to 2.30
ft.  This single catenary was then lifted onto nails in a straight line on three
evenly-spaced in-between posts; thus reducing the tension to 158 lb. Based on
the wire weight, a mathematical analysis shows the theoretical cable tension to
be reasonably close to the observed value. The barbed wire posses some elas-
ticity, and Young’s Modulus was estimated to be 15.8 X 106 psi.
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INTRODUCTION

Catenary, a word derived from Latin, means chain.  Today the word cate-
nary refers to the shape taken under the influence of gravity by a chain or flex-
ible cable of uniform density freely suspended between two fixed points. 

The mathematics of the shape of a catenary, and its application to sus-
pension bridges, goes back hundreds of years.  Galileo in 1638 thought the
shape of a hanging chain was a parabola, the curve of a projectile in flight
(Boyer, 1991).  Cables hanging under their own weight are loaded uniformly
along the horizontal, and do not form a perfect parabola (Beer and Johnston,
1977). The difference between a parabola and a catenary is small, however,
when the cable is tight.  In the early part of the eighteenth century Bernoulli
formulated complex catenary equations under different loadings, and showed
the effects of elasticity (“stretch”) of a cable by incorporating Hooke’s law in-
to the equations. The mathematics of inelastic and elastic cables, including
those used for suspension bridges, is given by Irvine (1981).  The dynamics of
suspended cables involves rigorous mathematics and has numerous applica-
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tions ranging from the aerodynamic failure of the Tacoma Narrows bridge in
1940 to the pitch of vibrating stringed instruments as a result of tension.  

Figure 1 shows a profile of a uniform inextensible cable hanging from two
fixed end points (A and B) at the same elevation. “Span” is the straight-line dis-
tance between the end points, and is designated by the letter L.  “Sag” is the
deflection to the lowest point, and is designated by the letter h. For this paper,
using Cartesian coordinates, x and y are the horizontal and vertical distances
from the center point C. 

BARBED WIRE FENCE EXPERIMENT

The purpose of this paper is to evaluate the applicability of catenary equa-
tions during the installation a barbed wire fence. Barbed wire is a cable and
follows the mathematical analyses developed for cables. 

In October, 2002, a fence was built near Hill City, SD, on the author’s prop-
erty.  The area is located on a nearly flat flood plain of Slate Creek, and the
end posts are very nearly at the same elevation.  Figure 2 is a sketch of the
fence installation. The span is 213 ft.  [Note: for the purpose of the accuracy
required in the following calculations, it is assumed that this span measurement
is accurate to six significant figures.] The end posts are typical in that they con-

Figure 1. Cartesian coordinates for a cable suspended between two fixed points.

Figure 2. Sketch of barbed wire and fence posts at Slate Creek. The span is 213 ft.
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sist of double posts supported by a cross beam and diagonal wires.  A barbed
wire was to be attached to the end posts approximately 3 ft above the ground.
It is assumed that the end posts at A and B are completely immovable and the
span is a constant 213 ft. End point A is the location of a staple (“U-nail”) firm-
ly attaching the wire. Point B is the location of another staple that has not been
firmly affixed; the wire is free to move through it.  

The barbed wire is double-wound, galvanized, two point, Sierra 123⁄4 gauge
barbed wire. Each strand has a diameter equal to 1/12.75 = 0.07843 inch = 1.99
mm. A roll of barbed wire 80 rods in length (1320 ft) weighs 68 lb. [Note: in
the English system the unit of force is pound (of force). To avoid ambiguity
this is often referred to as lbf.  In the metric system the unit of force is a New-
ton.]  The unit weight (w) of the barbed wire equals 68 lbf/1320 ft = 0.0515
lbf/ft.

To develop tension in the wire, a standard fence tightener (“fence stretch-
er”) was utilized. This device was located very near end post B (Fig. 3). A cal-
ibrated spring was attached to the fence stretcher so that tensional force could
be measured. The spring is capable of measuring up to 200 lb force, and was
calibrated before and after the experiment to ensure that it functioned correct-
ly.

Figure 4 shows the initial setup when 113 lb of tensional force was applied
to the wire. This lifted the wire off the grass, forming a catenary.  The deflec-
tion at 1/8 spacing between the end points A and B is shown.  The sag (in the
center) is 3.03 ft. The reason the deflection is not perfectly symmetrical is un-
doubtedly due to the weight (7 lb) of the fence stretcher located 2 ft from end

Figure 3. Photograph of end post B showing fence stretcher and spring.
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point B. The weight of this device actually constitutes a small point load, but
for the purpose of this experiment does not negate the general conclusions re-
lating to a wire forming a catenary by its own unit weight.

The fence stretcher was then cranked tighter, increasing the tension while
reducing the sag.  At 127 lb the sag was 2.76 ft, at 138 lb the sag was 2.60 ft,
at 157 lb the sag was 2.35 ft, and finally at 177 lb the sag was 2.30 ft.

At this last setup (177 lb tension), the wire was then manually lifted and
loosely draped over a nail in the exact center of the 213 ft span.  This nail is
on a straight line between A and B; its coordinates are (0,h). Two catenaries
were thus formed, and the tension was observed to drop from 177 lb to 162
lb. The sag in the middle of the two catenaries averaged 0.54 ft. 

The wire was then further lifted so as to be draped over nails on a straight
line on three posts evenly spaced between end posts A and B.  Four catenar-
ies were thus formed, and the tension dropped to 158 lb.  The sag in the mid-
dle of the four catenaries averaged 0.14 ft. 

WIRE LENGTH AND EXTENSION

The theoretical basis for catenary length is shown in Beer and Johnston
(1977).  If the sag (h) is small relative to the span (L), then the length (sB) of a
suspended cable is:

sB = xB{1 + 2/3(yB/xB)2 - 2/5(yB/xB)4 + …}.

Figure 1 shows end point B that has the coordinates xB and yB.  Because the
origin of the Cartesian system is point C, sB is the cable length from point C to
point B only.  Since the span is 213 ft, xB = 106.5 ft.  Accordingly, yB is the sag
(h). Using the initial setup where h = 3.03 ft, the cable length is:

sB = 106.5 ft{1 + 2/3(3.03 ft/106.5 ft)2 -  2/5(3.03 ft/106.6 ft)4 + …} 
= 106.5 ft{1+ 0.000,539,6 – 0.000,000,066 + …}
= 106.555,746 ft.

Therefore the entire cable length is 213.114,92 ft, which can be rounded off to
213.115 ft.

Figure 4. Initial setup using 113 lb tension, showing deflection at 1/8 spacing.
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Similarly, when the sag was reduced to 2.30 ft, the cable length would be
only 213.066 ft.  The difference between these two (theoretical) lengths is 0.049
ft. 

When the fence stretcher was cranked from 113 to 177 lb, it was observed
that 0.3125 ft of barbed wire actually advanced through it, thus diminishing the
length of the wire. This advance was partially offset by the attached spring
which extended 0.1823 ft as the stretcher was cranked.  Therefore the net ad-
vance of the wire towards point B was 0.1302 ft.

Considering both the change in the (theoretical) length of the catenary
(0.049 ft) during the 113 lb and 177 lb setups, and the net advance of the wire
towards point B (0.1302 ft), the barbed wire actually extended 0.1302 ft – 0.049
ft = 0.0812 ft.  This shows that the barbed wire is not completely inelastic. [Most
theoretical catenary loading equations assume the wire is completely rigid,
somewhat like a steel chain. But an elastic material behaves differently. Con-
sider, for example, a very long coiled spring hung as a catenary. If this spring
were lifted in the center to form two catenaries the change in length of the
spring would be so negligible compared to the total span length that there
would be practically no reduction in tension at all.]

Based on the elasticity measurements cited above, a crude determination
of Young’s modulus can be made (Fig. 5). It is assumed that stress and strain
plotted on arithmetic paper form a straight line through the origin (Hooke’s
Law).  Figure 4 shows that the wire extended 0.0812 ft when the tension in-
creased from 113 to 177 lb. This increment is plotted along a straight line go-
ing through the origin.  The slope of the line can be used to determine Young’s
modulus (also called E, the Modulus of Elasticity). The slope of this line is
0.0014 ft/lb. Since the wire is 213.115 ft long, the strain is 6.569 X 10-6 ft/ft per
pound. The inverse of this is a more common way of expressing Hooke’s law;
therefore this can be restated as 1.52 X 105 lbf are required to produce a strain
of 1 ft/ft.  In the English system, the units for Young’s modulus are pounds
(force) divided by square
inches (cross sectional
area).  The cross sectional
area of the two wires = 2
(3.1416) (0.995 mm)2 =
6.2205 mm2 = 0.9641 X 10-2

in2. Therefore Young’s
modulus is 1.52 X 105

lbf/0.9641 X 10-2 in2 = 15.8 X
106 psi.  This is reasonable
close to published values of
Young’s Modulus for steel,
approximately 27 to 30 X
106 psi (Marks, 1941; Sears
and Zemansky, 1955).  It is
possible that some of the
extension observed in this
experiment may have been

Figure 5. Data used for calculation of Young’s
modulus. The plot shows the change in length of
the 213 ft span based on different tensional load-
ings.
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plastic-like deformation as the barbed wire straightened along kinks as it was
stretched.

DEFLECTION AND TENSION

Theoretically, the profile of an inextensible cable hanging from two fixed
points at the same elevation forms a catenary.  The equation for the form of a
catenary utilizes a hyperbolic cosine function (Irvine, 1981). This complex for-
mula is a result of the changing slope of the cable, and the fact that the verti-
cal load per horizontal cable length is not everywhere the same as the vertical
load measured along the inclined cable.  As pointed out by Beer and Johnston
(1977): “…certain catenary problems involve transcendental equations which
must be solved by successive approximations.”  However, where the sag is
small relative to the span, a hanging cable can be analyzed as a simpler
parabolic curve as follows (after Beer and Johnston, 1977).

Figure 6 shows the forces involved in a catenary. The uniformly distribut-
ed load (w) is simulated by a point load (W) so that:

W = w (cable length).

Using the initial setup:

W = 0.0515 lbf/ft (213.115 ft)
= 10.9754 lbf.

This vertical load occurs at the middle of the cable (point C on Figure 6A), and
this would be supported by W/2  = 5.4877 lbf upward force at the end points
A and B. 

For the initial setup, the sag was 3.03 ft.  Considering the right half of the
catenary (from point C to B), half of the total load (W/2) is shown acting at a
distance L/4 = 53.25 ft from point B.  The tension TC in the cable at point C
can be determined by equating the moments about point B:

MB clockwise = MB counterclockwise
h (TC) = L/4 (W/2)

3.03 ft (TC) = 53.25 ft (5.4877 lbf)
TC = 96.4425 lbf

The cable is horizontal at point C; hence TC acts horizontally.  At point B,
the horizontal component must be the same as TC, but point B also has a ver-
tical force of 5.4877 lbf.  Therefore, the resultant cable tension at point B (TB)
can be solved as:

TB = [TC
2 + (W/2)2]0.5

= [(96.4425)2 + (5.4877)2]0.5

= 96.60 lbf.
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During the initial setup
113 lb tensional force was
actually observed at point
B.  This is 17% greater than
the 96.60 lb theoretical ten-
sional force. The weight of
the stretcher device un-
doubtedly caused the ob-
served tension to be greater
than the theoretical value.

PRACTICAL APPLICATION

When installing a
barbed wire fence, there is
a natural tendency to hang
the wire between the two
end posts and hammer it
firmly into place. This is the
wrong way to do it.  A
barbed wire, firmly affixed
and hanging in a catenary
between two fence posts, contains a certain tension.  Lifting this wire up onto
nails in a straight line on posts in-between the end posts reduces the tension.
Therefore, from a practical point of view, the best way to string a barbed wire
fence is to first support it in a straight line on as many posts as practical.  In
other words, lift the wire up into position so that is its draped over a nail (or
is free to slide through a staple) on a straight line on all the posts to be utilized
between the end posts.  Then apply tension to the wire.  Then hammer the
staples into all the posts. This approach is merely a manifestation of the com-
mon dictum that a straight line is the shortest distance between two points.

There are other practical uses of the catenary equations. For example,
where a topographic low exists between the two end posts, the barbed wire
may initially hang above a post in the valley. If a certain tension is ultimately
sought, a sag in this catenary can be precisely established so that the ultimate
desired tension is achieved when secured to the central post. 
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Figure 6. Free-body diagrams for catenary with
span (L) and sag (h).

A. Uniformly-distributed load simulated by a
point load (W) at the center.

B. Right side of catenary used for balance of
moments about point B.
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