LOSSES ASSOCIATED WITH
GASTROINTESTINAL NEMATODES
IN YEARLING, STOCKER, GRASS CALVES

Keith Mertz, Bill Epperson, and Mike Hildreth
Depts. of Veterinary Science and Biology/Microbiology
South Dakota State University
Brookings, SD 57007

ABSTRACT

In the competitive business of the beef cattle industry, it is becoming increasingly critical for producers to maximize profits where possible and likewise to cut losses from their operations. Producers need to evaluate several factors, among which include genetics, nutritional requirements, environmental factors, disease prevention, and parasite control. Gastrointestinal nematodes are often an overlooked factor when producers consider making improvements to their operation. Problems associated with gastrointestinal nematodes are less obvious because visible signs that animals are infected by the parasites don’t occur until clinical levels of infection are attained. At clinical levels, noticeable changes occur in cattle, such as loss of weight, bottle jaw, and a rough hair coat. At sub-clinical levels, the effects of the parasites can possibly lead to lowered weight gains, decreased rates of production, and reduced immunity to various other diseases. Although sub-clinical nematodiasis is not visual, producers need to be aware of the losses due to the parasite. The objective of this project was to measure losses due to gastrointestinal nematodes in yearling, stocker, grass calves. Six herds were utilized for this study over a three-year period (1997-1999). The herd dynamics for each trial of the study consisted of pasture groups of steers, or spayed heifers. The stocking densities for each pasture group varied as well as the overall pasture conditions. The experimental model for each trial was to randomly treat 10% of the members from each herd with 1 SR Ivomec bolus before release onto pasture for summer grazing. Another 10% of the herds were also randomly selected as paired controls. Both groups were weighed at the beginning and end of the study and average daily gains calculated. After controlling for confounders such as trial site, start weight, and sex, it was possible to combine all the data and perform a regression analysis on the control and treated cattle. The treated animals outperformed the control animals in ADG by 0.1 lbs. (p=0.004). EPG were also calculated at the end of the study to observe the different amount of infections between the treated and control animals.