MULTINUCLEAR FT-NMR USING
THE ANASAZI EFT-60 INSTRUMENT

Steven R. Moeckly, Gary W. Earl, and Arlen Viste
Department of Chemistry, Augustana College
Sioux Falls, SD 57197

ABSTRACT

The purpose of this work was to demonstrate significant examples of the multinuclear NMR capabilities of the recently upgraded Anasazi EFT-60 FT-NMR at Augustana College. Instructional examples include 19F nmr spectra of NH$_4$ BF$_4$ and Na PF$_6$; 11B nmr spectra of NH$_4$ BF$_4$; 31P nmr spectra of (CH$_3$O)$_3$P, PF$_6^-$, and H$_3$PO$_2$; 1H spectra of (CH$_3$O)$_3$P and H$_3$PO$_2$.

Keywords

multinuclear nuclear magnetic resonance, spin-spin coupling

INTRODUCTION

Beginning in 1996 the nuclear magnetic resonance instrumentation at Augustana College has been upgraded from CW (continuous wave) to FT (Fourier transform). Initially a Hitachi Perkin Elmer R-24A NMR spectrometer was upgraded from CW to FT-NMR for 1H, by Anasazi Instruments, Indianapolis, IN. In 1998 another CW instrument was acquired, a Varian EM-360A NMR spectrometer. In August 1998, Anasazi Instruments upgraded this to an Anasazi EFT-60 NMR spectrometer, providing extensive multinuclear nmr capability. This includes 1H, 13C, 19F, and numerous other nuclei in the range of 11.26 to 25 MHz with the original 1H at 60.01 MHz, such as 31P, 11B, 29Si, 79Br, 59Co, and 23Na. The nuclei listed have been observed in this laboratory so far. Altogether, 42 nuclei of 34 elements fall in the observable frequency range. (Drago, 1992; Pople, 1959)

METHODS

Using the Anasazi EFT-60 FT-NMR, standard pulse sequences were used to acquire free induction decay (FID) data. Fourier transform converted the spectrum from time domain to frequency domain. (Drago, 1992). Nuclei observed include 1H, I=1/2, at 60.010 MHz; 19F, I=1/2, at 56.461 MHz; 11B, I=3/2, at 19.246 MHz; and 31P, I=1/2, at 24.292 MHz. Samples used were reagent grade chemicals.
RESULTS AND DISCUSSION

The 11B nmr spectrum of the BF$_4^-$ ion was run, showing the spin-spin coupling of the four 19F with the 11B nucleus.

Note that the 11B resonance is split by spin-spin coupling to the four equivalent 19F in the tetrahedral BF$_4^-$ ion. 19F has I=1/2. Expected intensities are 1:4:6:4:1 in this quintuplet. The spin-spin coupling constant was $J_{BF} = 1.2$ Hz.

Boron has two isotopes. 10B has a spin of I=3 and an abundance of 19.58%. 11B has a spin of I=3/2 and an abundance of 80.42%. Its nmr frequency is 19.246 MHz, nicely within the range of our instrument. For nuclei with I > 1/2, there is a nuclear quadrupole moment which can be a problem, in terms of broadening spectral lines. However in high symmetry environments, specifically tetrahedral or octahedral, the nuclear quadrupole moment is not a problem. So the tetrahedral BF$_4^-$ ion was an excellent case to study, as illustrated here.

The 19F nmr spectrum of NH$_4$(BF$_4$) was examined. It is expected to show a quartet of lines of equal intensity for the splitting of the 19F resonance by 11B with I=3/2, with $J_{BF} = 1.1$ Hz. 11B is the more abundant isotope. The 4 line multiplet corresponds to 2I+1 = 4. 10B, the less abundant isotope, has I=3 so that 2I+1 = 7 lines should occur in its multiplet. These were not quite resolved, and the chemical shift for 10BF$_4^-$ was slightly different than that for 11BF$_4^-$ in the 19F nmr spectrum.
A good example of a 31P nmr spectrum was that of $(\text{CH}_3\text{O})_3\text{P}$. The splitting of the 31P resonance by the nine equivalent 1H nuclei was expected to give a 10 line multiplet, with relative intensities 1:9:36:84:126:126:84:36:9:1. 8 lines were clearly visible, with the intensities of the first and last of the 10 lines too low to distinguish from noise. $J_m = 10.6$ Hz was the observed splitting.

The 1H spectrum gives $J_{PH} = 10.7$ Hz.
Hypophosphorous acid, \(\text{H}_2\text{PO}_2\) (aq) has a distinctive structure with two \(\text{P}-\text{H} \) bonds and one \(\text{O}-\text{H} \) bond. The \(^{31}\text{P} \) nmr spectrum is a triplet, with \(J_{zz} = 573 \) Hz, a very substantial splitting.
As a final example, two nmr spectra, for \(^{31}\)P and \(^{19}\)F, were observed for NaPF\(_6\) with its octahedral PF\(_6\)\(^-\) ion. In the \(^{31}\)P spectrum, the measured coupling constant was \(J_{PF} = 714\) Hz.

In the \(^{19}\)F spectrum, the measured coupling constant was essentially the same, \(J_{PF} = 717\) Hz.

CONCLUSION

Significant examples of the multinuclear NMR capabilities of the recently upgraded Anasazi EFT-60 FT-NMR at Augustana College have been successfully demonstrated. Spectra have been observed thus far for \(^1\)H, \(^{13}\)C, \(^{19}\)F, \(^{31}\)P, \(^{11}\)B, \(^{29}\)Si, \(^{79}\)Br, \(^{59}\)Co, and \(^{23}\)Na. Altogether, 42 nuclei of 34 elements fall in the observable frequency range of 11.26 to 25 MHz along with the vicinity of 60 MHz.
LITERATURE CITED

ACKNOWLEDGMENTS

The NMR was upgraded through a 1996 research grant of Prof. Gary Earl from NSF/EPA, CHE-9613052, "Preparation of More-Biofriendly Quaternary Ammonium Compounds and their Decomposition to Useful Reagents", with matching support from Augustana College for the NMR. An Interim Leave for Arlen Viste, provided during January 1999 by Augustana College, is also gratefully acknowledged.