PLANT CHEMICAL DEFENSE ALLOCATION CONSTRAINS EVOLUTION OF LOCAL RANGE

David H. Siemens¹, Riston Haugen¹, Steven Matzner², and Nicholas VanAsma³
¹Integrative Genomics Graduate Program
Black Hills State University
Spearfish, SD 57799
²Biology Department
Augustana College
Sioux Falls, SD 57197
³Biology Department
Black Hills State University
Spearfish, SD 57799

ABSTRACT

Many species of plants are distributed spatially in patches, the boundaries of which may occur and change because of a complicated interplay between myriad environmental stressors and limitations of, or constraints on, plant coping mechanisms. By examining quantitative genetic variation and co-variation among marker-inferred inbred lines and maternal families of an upland wild mustard species within and just a few meters across a natural patch boundary, we show that the evolution of tolerance to the stressful environment outside a patch is constrained by allocation to glucosinolate compounds that are defensive against generalist insect herbivores.